Warning: Cannot modify header information - headers already sent by (output started at /home4/theeurek/public_html/amcrasto/wp-config.php:1) in /home4/theeurek/public_html/amcrasto/wp-includes/feed-rss2.php on line 8
SYNTHESIS – EUREKAMOMENTS IN ORGANIC CHEMISTRY https://amcrasto.theeurekamoments.com DR ANTHONY MELVIN CRASTO Ph.D, WorldDrugTracker, Glenmark scientist ( Ph.D, ICT) helping millions with chemistry websites, million hits on google sites, Intention is to help chemists across the world, content is academic Sun, 02 Feb 2014 09:56:55 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 The Magic of Cubane! https://amcrasto.theeurekamoments.com/2014/02/02/the-magic-of-cubane/ Sun, 02 Feb 2014 09:56:37 +0000 http://amcrasto.theeurekamoments.com/?p=1283 Continue reading The Magic of Cubane!]]>  

File:Cuban.svgCubane[1]
Pentacyclo[4.2.0.02,5.03,8.04,7]octane
CAS 277-10-1

Cubane (C8H8) is a synthetic hydrocarbon molecule that consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane is one of the Platonic hydrocarbons. It was first synthesized in 1964 by Philip Eaton, a professor of chemistry at the University of Chicago.[2] Before Eaton and Cole’s work, researchers believed that cubic carbon-based molecules could not exist, because the unusually sharp 90-degree bonding angle of the carbon atoms was expected to be too highly strained, and hence unstable. Once formed, cubane is quite kinetically stable, due to a lack of readily available decomposition paths.

The other Platonic hydrocarbons are dodecahedrane and tetrahedrane.

Cubane and its derivative compounds have many important properties. The 90-degree bonding angle of the carbon atoms in cubane means that the bonds are highly strained. Therefore, cubane compounds are highly reactive, which in principle may make them useful as high-density, high-energyfuels and explosives (for example, octanitrocubane and heptanitrocubane).

Cubane also has the highest density of any hydrocarbon, further contributing to its ability to store large amounts of energy, which would reduce the size and weight of fuel tanks in aircraft and especially rocket boosters. Researchers are looking into using cubane and similar cubic molecules inmedicine and nanotechnology.

Synthesis

The original 1964 cubane organic synthesis is a classic and starts from 2-cyclopentenone (compound 1.1 in scheme 1):[2][3]

Scheme 1. Synthesis of cubane precursor bromocyclopentadienone

Reaction with N-bromosuccinimide in carbon tetrachloride places an allylic bromine atom in 1.2 and further bromination with bromine in pentane –methylene chloride gives the tribromide 1.3. Two equivalents of hydrogen bromide are eliminated from this compound with diethylamine in diethyl ether to bromocyclopentadienone 1.4

Scheme 2. Synthesis of cubane 1964

In the second part (scheme 2), the spontaneous Diels-Alder dimerization of 2.1 to 2.2 is analogous to the dimerization of cyclopentadiene to dicyclopentadiene. For the next steps to succeed, only the endo isomer should form; this happens because the bromine atoms, on their approach, take up positions as far away from each other, and from the carbonyl group, as possible. In this way the like-dipole interactions are minimized in the transition state for this reaction step. Both carbonyl groups are protected as acetals with ethylene glycol and p-toluenesulfonic acid inbenzene; one acetal is then selectively deprotected with aqueous hydrochloric acid to 2.3

In the next step, the endo isomer 2.3 (with both alkene groups in close proximity) forms the cage-like isomer 2.4 in a photochemical [2+2] cycloaddition. The bromoketone group is converted to ring-contracted carboxylic acid 2.5 in a Favorskii rearrangement with potassium hydroxide. Next, the thermal decarboxylation takes place through the acid chloride (with thionyl chloride) and thetert-butyl perester 2.6 (with t-butyl hydroperoxide and pyridine) to 2.7; afterward, the acetal is once more removed in 2.8. A second Favorskii rearrangement gives 2.9, and finally another decarboxylation gives 2.10 and 2.11.

The cube motif occurs outside of the area of organic chemistry. Prevalent non-organic cubes are the [Fe4-S4] clusters found pervasively iron-sulfur proteins. Such species contain sulfur and Fe at alternating corners. Alternatively such inorganic cube clusters can often be viewed as interpenetrated S4 and Fe4 tetrahedra. Many organometallic compounds adopt cube structures, examples being (CpFe)4(CO)4, (Cp*Ru)4Cl4, (Ph3PAg)4I4, and (CH3Li)4.

It was mentioned previously that cubane was first prepared in 1964 by Dr. Philip E. Eaton. He was partnered by Thomas W. Cole and together they successfully completed the first synthesis, shown schematically below:

N-bromosuccinimide acts as the reagent for a radical mediated allylic bromination reaction which is carried out in tetrachloromethane with heat as the initiatorBromine is added......and 2 moles of HBr are eliminated......and 2 moles of HBr are eliminated...

Reactive enough to undergo dimerisation via a [4+2] cycloaddition reaction to give the ENDO cycloadductThe more reactive, bridgehead ketone group is protected by Ketal formation.Photochemical energy is required to promote the [2+2] intramolecular cycloaddition reaction.

The acid mediated oxidation of the ktone group to a carboxylic acid.

 

 

The first occurance of a Hunsdiecker decarboxylation, firstly substitutes the caroxylic acid group and then removes it.The first occurance of a Hunsdiecker decarboxylation, firstly substitutes the caroxylic acid group and then removes it.

 

Acid hydrolysis releases the protected ketoneThe second instance of a Hunsdiecker decarboxylation.

 

The second instance of a Hunsdiecker decarboxylation.The second instance of a Hunsdiecker decarboxylation.

Decarboxylation via thermal degradation of di-t-butyl perester

 

This, however, was soon simplified by N.B.Chapman who condensed the process to give cubane-1,4-dicarboxylic acid in five steps and so cubane in six:

n 1966 J C Barborak et al discovered yet another new synthesis of cubane. It was slightly unconventional in the fact that it utilised cyclobutadiene as a key substance to the process. Before this,cyclobutadiene was usually unavailable for the purposes of organic chemistry due to it’s instability. The shorter synthesis is shown below:

Decomposition in presences of 2,5-dibromobenzoquinone gives......the endo adduct.

 

Irradiation, in benzene, with a mercury lamp initiates the intramolecular [2+2] cycloaddition reaction.

Treatment with KOH at 100 ºC gives the cubane-1,3-dicarboxylic acid

Decarboxylation via thermal degradation of di-t-butyl perester

Since the synthesis of the cubane-1,4-dicarboxylic acid has become shorter and easier, a new decarboxylation method has also devised to give increased yields of the final cubane product. This has allowed the scale of production reach multikilogram batches in places (Fluorochem in California and EniChem Synthesis in Milan) eventhough cubane and its derivatives remain expensive to purchase.

Cuneane may be produced from cubane by a metal-ion-catalyzed σ-bond rearrangement.[4][5]

Cubane is a unique molecule for its extraordinary C8 cage, very high symmetry,exceptional strain and unusual kinetic stability. The particular appeal of cubane,referred to as a landmark in the world of impossible compounds, stems from therehybridization of the carbon atoms away from the canonical sp3 configuration,that is required to bound together eight CH units in a cubic framework.There is now a revival of interest on the chemistry of cubane and its functionalized derivatives,triggered by potential applications as high-energy fuels, explosives and propellantsand intermediates in pharmaceuticalpreparations.Let us now discover the synthesis and properties of this landmark molecule of impossible chemistry
Cubanehas the highest strain energy (166kcal/mol) of any organiccompounds available in multi gram amount. It is a kineticallystable compound and only decomposite above 220 Celsius Degree.It is also one of the most dense hydrocarbons ever know.However, although many physical properties of cubane have been measured, in1980 and before, cubane was considered just a laboratory curiosity of interest only to academics.It changed, in early 1980s when Gilbert of U.S ArmyArmament and Development Command (now ARDEC) pointed out that cubane’svery high heat of formation and its exceptionally high density could make certain cubanederivatives important explosives.

The effectiveness of an explosive is dependent on the energentics of the decomposition reaction,

the number of moles and molecular weight of the gaseous products and also the density.

The more mols of of an explosive that can be packed into the limited volume the better. .

Highly nitrated cubanes can be predicted to be very dense and very powerful explosives.

Octanitrocubane is calculated to be 15~30%more powerful than HMX.

 

Cubane, which CA index name is Pentacyclo[4.2.0.02,5.03,8.04,7]octane (7CI,8CI,9CI),has exceptional structure, strain and symmetry and it is a benchmark in organic chemistry.It has been studied extensively and much of its properties has been published.Some of the physical properties are given at right hand table.

The C-C bond length is a bit longer than obtained in the original X-ray structure determination by

Fleischer in 1964. There is not much difference between this bond length and the

C-C bond length in a simple cyclobutane.

 

SYNTHESIS

The cubane system was first synthesized over 35 years ago by Philip Eaton and Tom Cole.
It is a highly symmetric cubic cage structure having carbon atoms at the vertices of a cube.
The synthesis needs to go through brombromocyclopentadienone
dimer I and cubane-1,4,dicarboxylic acid. It is a marvel scheme of economy and simplicity.
With only minor modification, this procedure remains to this day the best available

method for large-scale synthesis of cubane-1,4,dicarboxylic acid.

 

 

 

The stereospecific in situ [4 + 2] (Diels-Alder) cyclodimerization of 4-bromocyclo-pentadienone
is the key in this kinetically controlled synthesis. However, it is still a tricky matter
and a few years later after this synthesis is published, N.B.Chapman et al in England following up
this work and improved this synthesis.

Why cubane is stable?

The reason for this, unappreciated at the time of the early predictions of instability,

 is that there are no kinetically viable paths along which cubane can rearrange thermally.

 On one hand, orbital symmetry considerations raise the energy of concerted two-bond ring

opening reactions. On the

other, there is little to be gained by breaking just one bond as there is concomitantly

only a small change in geometry, and the resulting biradical is still very strained.

Functional group transformation

Functional groups on the cubane system generally behaves very well.Functional group transformation can be applied successfully.For example, the preparation of 1,4-dinitrocubane from cubane-1,4-dicarboxylic acid.(The mechanism is provided on the right hand side.) Classical methodology is used here.

Substitution on the cubane framework is fairly easy done by the cubyl radical.
However, the problem is such that a mixture of products are obtained.
Thus, to achieve controlled substitution on the cubane framework,
we need to carefully study the chemistry of the cubane system.

 

The improvement in synthesis of

cubane-1,4-dicarboxylic acid

 

 

This is the improved synthesis by N.B Chapman et al in England.

 Basically the improvement is such that the

2-bromocyclopentadienone could be made easily and undergoes spontaneous dimerization.

The rest of the reaction is the same as the original one.

 

This synthesis now is scaled up and is conducted in small pilot plants by

Flurochem in California and EniChem Synthesis in Milan.

This method is much more superior than the old method. It is introduced by

Derek Barton et al and use the radical-induced decomposition of diester which can be

prepared easily from cubane-1,4-dicarboxylic acid.

IMPROVEMENT

This method is much more superior than the old method. It is introduced by

Derek Barton et al and use the radical-induced decomposition of diester which can be

prepared easily from cubane-1,4-dicarboxylic acid

 

IR

 

Cubane is a colorless solid. It melts at 130- 131°C, and decomposes above the melting point.

 It is soluble in CS2, CC14, CHC13, and benzene.

Spectra were obtained from 400 to 3600 cm-l with a Beckman IR-12 spectrophotometer.

The lower limit was set by KBr cell windows. In addition a thick deposit of do was

 measured down to 200 cm-lin a Csl cell. Since no infrared bands were found, the range

200-400 cm-l was not examined for the other compounds.

The spectral slit widths were 1-2 cm-l in all cases.

In the infrared spectrum, there are only noticeable absorptions in the region from

 4000 to 660 cm-1appear at 300,1231, and 851 cm-1.

Generally, for single-line proton magnetic resonance spectrum, the one

and only absorption appears at chemical shift=6.0ppm.

Originally there was doubt whether cubane does exist.

The geometry at each carbon atom is far from tetrahedral.

Only later, we found out that there is no kinetically viable paths exist for

the thermal rearrangement of cubane.

At same time, orbital symmetry considerations shows that

the energy of concerted two-bond ring-opening reactions is very high.

There will be very little gain in energy by breaking just one bond, as the

concomitant change in geometry is small, and the resulting biradical is still very strained

In 1964 Fleischer showed that cubane forms a stable solid at room temperature with a

crystalline structure composed of cubane molecules occupying corners of the rhombohedral

primitive unit cell (space group R3). The cubic molecular geometry gives the solid many unusual

electronic,structural, and dynamical properties compared to the other hydrocarbons.

For example, solid cubane has a relatively high melting point temperature about 405 K! and a

very high frequency for the lowest-lying intramolecular vibrational

mode (617 cm-1). Recent work related to cubane has focused on solid cubane and cubane based

derivatives.Because of relatively weak intermolecular interaction the cohesive energy relative

to the constituent C8H8 is expected to be small, and most of the physical properties of

solid cubane are dominated by the properties of the C8H8molecule.

Pharmaceutical aspect of cubane

Because the cubane frame is rigid, substituent have precise spatial relationships to each another.

The distance across the cubane (the body diagonal) is almost the same as that between the para

positions of the benzene ring. On cubane, on can add substituents in the “benzene plane”, as

well as above and below it, so to speak. This offers fascinating position possibilities for

the synthesis of new pharmaceuticals. A number of cubane derivatives have already

been obtained which shows interesting activity in anti-AIDS and anti-tumor screens.

Although the activity or the toxicity balance of cubane is yet not know, the cubane

system is not inherently toxic. Most of cubanes are biologically innocuous.

The research of cubane pharmaceutical has just began. At least now,

cubane is a biologically stable, lipophilic platform on which the chemist

can install a wide range of substituents in a variety of well defined special relationships.

Developments in drug design programs should allow the judicious choice.

 

Dipivaloylcubane: a cubane derivatized with keto, cyano, and amide groups,

shown on the left- exhibits moderate activity against human immunodeficiency virus (HIV),

which causes AIDS, without impairing healthy cells.

Polymers of cubane:

Optically transparent cubanes and cubylcubanes have been proposed as building

blocks for rigid liquid-crystal compounds. UV active cubanes, for example cubyl ketones,

are readily transformed photochemically into coloured cyclooctatetraenes;this transformation

can be used to permanent information storage.

Another example of UV active cubane, which can be used to synthesis liquid crystals.

Polymers with cubane in the backbone or as a pendant group along a polymer chain is

focused now.

The cubane subunits in these polymers can be rearranged easily to cycloctatetraenes.

It is expected that polycyclooctatetra can be converted in to polyacetylenes by

the way of ring-opening metathesis polymerization. The polyacetylenes will have properties

which are enhanced by the chain being intrinsically part of another polymer.

These properties including stability and extrudability and etc. A example is shown below:

 

Cubane derivative could be the structural basis for a class of intrinsic small gap polymers.The small gap polymer could present intrinsic good conductivity without doping,good nonlinear optical and photoelectric properties.Investigation of oligamers with up to six units of a conjugated unsaturated cubane derivative,where all the hydrogen were removed, is carried out.The table below shows that the gap values in eV by EHT and PM3.These values suggest to us that these structures could be used to design a newclass of polymers with very small gap.

Explosive and fuels:

In the early 1980s Everett Gilbert of the U.S. Army Armament Research and Development

Command (now ARDEC) pointed out that the nitrocarbon octanitrocubane (ONC),

then unknown, has a perfect oxygen balance, and in light of the properties of the

parent hydrocarbon cubane should have a very high heat of formation per CNO2 unit

and an exceptionally high density as well. His colleagues Jack Alster, Oscar Sandus

and Norman Slagg at ARDEC provided theoretical support for Gilbert’s

brilliant insight and estimated that ONC would have a detonation pressure

significantly greater than HMX. Later, both statistical and computational

approaches predicted a density of 2.1 ± 2.2 g /cm3 for octanitrocubane,

greater than any other C, N, O compound.

Is Cubane a really good explosives?

Quantitative evaluation of the potential of a candidate explosive before synthesis is very difficult.

Currently, estimation of energetic properties relies on the empirically derived Kamlet and Jacobs

equations:

In these equations the heat released by the decomposition, the number of moles of gas produced,

and the molecular

weight of these gases are all critical factors. Density too is crucial.

Obviously, the more molecules of a high-energy material that can be packed into the limited

volume of a shell or rocket the better. Less obvious, but more important, density affects the

detonation velocity of an explosive.

This is a specialized “linear” rate of reaction that ranges from 5 to 10 km/s in

explosives and affects the maximum detonation pressure, a direct measure of the

power of an explosive. For a given explosive, the detonation pressure is proportional

to the square of its density, so great effort is made to obtain the highest density form

of any particular explosive.

Quantitative evaluation of the potential of a candidate explosive before synthesis is very difficult.

Currently, estimation of energetic properties relies on the empirically derived Kamlet and Jacobs

equations:

In these equations the heat released by the decomposition, the number of moles of gas produced,

and the molecular

weight of these gases are all critical factors. Density too is crucial.

Obviously, the more molecules of a high-energy material that can be packed into the limited

volume of a shell or rocket the better. Less obvious, but more important, density affects the

detonation velocity of an explosive.

This is a specialized “linear” rate of reaction that ranges from 5 to 10 km/s in

explosives and affects the maximum detonation pressure, a direct measure of the

power of an explosive. For a given explosive, the detonation pressure is proportional

to the square of its density, so great effort is made to obtain the highest density form

of any particular explosive.

Numerous nitro compounds are employed commonly as military and commercial explosives.

There is a continuing search for more powerful and less shock-sensitive examples.

Such materials are also sought as potentially useful fuels and propellants.

Most interest is focused on high-density organic compounds that contain all of the

elements needed for combustion to gaseous products in the absence of air.

Nitrocubanes carrying five or more nitro groups contain enough oxygen to oxidize

all constituent carbon and hydrogen atoms to gaseous CO, CO2, or H2O.

Each of these, along with N2, “explodes” from the solid to 12 gaseous molecules.

The expansion from the dense solid to a lot of gas (much expanded by the released heat)

produces the desired effect in propellants and explosives. ONC has a “perfect”

oxygen balance and would produce (were the detonation completely efficient)

eight molecules of carbon dioxide and four of dinitrogen. As ONC has no

hydrogen, no water forms when it burns; when used as propellants such zero-hydrogen

compounds leave little or no visible smoke (steam) in the plume behind the rocket;

such “low-signature” rockets are difficult to track.

On application of the Kamlet and Jacobs equations led ARDEC to predict that

octanitrocubane would be a very much better explosive (Table 1) than the classic

C-nitro compound trinitrotoluene (TNT), perhaps 15±30% better than the nitramine

HMX (the most powerful, commonly used military explosive), and at least competitive

with (and perhaps less shock-sensitive than) the newest experimental explosive CL-20

 

 

SYNTHESIS:(1)

The high strain that the cubane framework is under has already been highlighted. The researchers had to very cautiously attach a nitro group to each of the corners of the cube in order to make the desired product. The insertion of the first four nitro groups could be done by manipulating functional groups:

The key intermediate, cubane-1,3,5,7- tetracarboxylic acid (TNC), was obtained by clever application of the Brown-Kharasch photochlorocarbonylation to cubane mono-acid.

The addition of four further nitro groups proved far more difficult and new methodologies had to be developed, specifically the process of interfacial nitration. This method was used successfully to convert the sodium salt of TNC to pentanitrocubane (PNC) and then hexanitrocubane (HNC), both are stable materials.

Interfacial nitration, however, proved deficient for further nitration of HNC and again new experimental methodology had to be developed for its successful conversion to heptanitrocubane (HpNC):

Addition of excess NOCl to a solution of the lithium salt of HpNC in dichloromethane at -78°C gave the long-sought ONC:

 DIFF TYPES

For the last planned post in my Unnatural Products series, I’m going to write about Eaton’s 1981 synthesis of pentaprismane.[A] At the time, unnatural hydrocarbons were hot targets, and as the next largest prismane on the list this target was the subject of much research by groups around the world. Perhaps Eaton’s biggest rivals were the groups of Paquette and Petit, and in fact all three had, at various times, synthesised hypostrophene as an intended precursor to the target.

Unfortunately, the ‘obvious’ [2 + 2] disconnection from pentaprismane turned out to be a dead end and the photochemical ring closure was unsuccessful. The 1970s and early 1980s saw the publication of a number of other similarly creative, but sadly ill-fated, approaches based on various ring contractions, and the compound gained a well-earned reputation for extraordinary synthetic inaccessibility.

Eaton’s route began, as with the cubane and dodecahedrane syntheses previously covered in this series, with a Diels-Alder reaction. The diene used was the known tetrachlorocyclopentadienone acetal shown that upon heating neat with benzoquinone produced the endo adduct shown in excellent yield. Next, an even higher yielding photochemical [2 + 2] reaction was used to close the cage-like structure by cyclobutane formation. Treatment with lithium in liquid ammonia simultaneously reduced both ketones and removed all four chlorine atoms. The resulting diol was converted to the ditosylate, which, under carefully controlled conditions with sodium iodide in HMPA, underwent a mono-Finkelstein reaction to give the iodotosylate shown. When this was treated with t-BuLi halogen-lithium exchange, followed by an extraordinary fragmentation, gave a diene reminiscent of hypostrophene shown above. However, the extra carbon atom in the skeleton made all the difference, and unlike the parent compound, this did undergo a [2 + 2] cycloaddition when exposed to UV light. Finally, acetal hydrolysis gave homopentaprismane in 34% yield from benzoquinone, putting the group a single ring contraction from victory.[B]

With significant amounts of homopentaprismanone in hand, the group now intended to employ the transformation that had been the cornerstone of their cubane synthesis – the Favorskii rearrangement. Unfortunately, this required the introduction of a leaving group in the ketone α-position, a transformation made incredibly difficult due to the strained system and Bredt’s rule, which prevented enolisation.[C] Eventually a six-step sequence (!) to introduce a tosyloxy group was devised, beginning with a Baeyer-Villiger reaction using m-CPBA. A remarkable CH oxidation with RuO4, generated in situ, then gave the hydroxylactone. Treatment of this with diazomethane gave the corresponding δ-ketoester in almost quantitative yield. The group then reformed the starting norbornane-like bridge through use of an unusual acyloin type reaction effected by treatment with sodium in liquid ammonia. Finally, oxidation of the secondary alcohol and tosylation gave the Favorskii precursor, apparently preparable in muti-gram quantities.

Treatment with aqueous potassium hydroxide solution effected Favorskii rearrangement in excellent yield, especially considering that this was the first time the elusive pentaprimane ring system had been prepared. Finally, Eaton used the three-step decarboxylation he had developed for cubane to remove the extraneous acid and give pentaprismane in 18 steps. Awesome.[D]

References and suchlike

  1. A    J. Am. Chem. Soc., 1981, 103, 2134. Much like Eaton’s seminal cubane paper, the title is a single word, ‘Pentaprismane’. I love the lack of hype.
  2.  B   Although Petit had prepared this compound a full decade earlier, his approach relied on a cycloaddition of the difficult to prepare cyclobutadieneiron tricarbonyl with the acetal of tropone, and proved difficult to scale  up. In fact, in his own paper Eaton rather directly described it as ‘conceptually fascinating [but] useless synthetically’.
  3. C   Eaton uses the phrase ‘invasion at the bridgehead’, which I find delightfully evocative. Makes it sound like a second world war campaign. Apparently the group initially planned, in spite of Bredt’s rule, to deprotonate the bridgehead position, relying on inductive stabilisation of the anion rather than enolate formation, but were unable to do so.
  4. D  Pentaprismane is the most recent of three prismanes synthesised to date, the other two being cubane, and triprismane. Although I think triprismane looks quite silly, it was actually synthesised some 8 years previouslyby T. J. Katz in far fewer steps. Go figure.

 

The Amide Activating Group

 

The very first step of cubane frame substitution will be the activation of the cubane frame.

This can be done by amides. The idea is derived from the similarities between cubane and arenes.

 Both of them have C-H bonds with enhanced s character ( see structure),

 and in both the adjacent (ortho) substituents are forced to be coplanar.

A more specific example is the cubane-N,N-diisopropyl carboxamide

 reacts with excess lithium tetramethylpiperidide (LiTMP) in THF solvent.

About 3% of the deuteriation products obtained.

The diisopropyl amide activating group is used because it is inert to the amide

bases employed for ortho metalation. Although there is a problem, there is

 difficulty in hydrolyzed it the corresponding carboxylic acid.

The problem is finally solved by using borane reduction followed by the oxidation

 of the amine so produced with dimethyldioxirane or potassium permanganate (in large scale).

Transmetalation is the basis of a complete synthetic methodology for the preparation

of a great variety of the substituted cubanes.

In order to make the substitution productively, a way must be found to

make use of the small amount of anion in the equilibrium with the starting material.

Mercury salt is used here as an effective anion trap and very little starting material remain unreacted.

The mercury for lithium transmetalation resulted in nearly complete conversion of the

starting material by drawing the lithiation equilibrium to the right.

 

The amide group is important in stabilizing the intermediate lithiated cubane,

but not the mercuriated compound. Once the lithium is replaced by mercury,

 the amide group is again able to assist removal of another ortho-hydrogen atom.

In the end, the complex ortho-mercurated product mixture obtained was

 simplified by treatment with elemental iodine.

The iodine cleavage of the carbon-mercury bonds 2-iodo and 2,6-diiodo derivatives

of the starting amide in72% and 15% respectively

Cubyl Grignard Reagents

From transmetalation, a reverse transmetalation was also developed, which is basically adding Grignard reagent to the mercuriated cubane instead of the iodine. However, these processes have a great main disadvantage, the mercury is highly toxic. Thus, scale up of this method was limited.

In 1988, Bashir-Hashemi introduced transmetaltion with magnesium salts and thereby provided easy access to cubyl mono-and bis-Grignard reagents. It is a reaction of cubane diamide with an excess of LiTMP/MgBRin THF and quenching with I2 gave diiodocubane diamide of 72% yield.

The effect of the presence of electron withdrawing group     –  Cyanide

When electron withdrawing group such as cynate present, they stabilize both intermediate lithiated cubanes very well. As a result, only a small amount of LiTMP is need to achieve fairly complete deprotonation even at -78°C.

The inductive effect of the cyano group clearly enhances the reaction. However, the adding of cyano groups results in competitive lithiation and a mixture of products. However, this problem can be well trackled by adding MgBr2.The product ratio was improved to 9:1 favoring carboxyliation ortho to the amide function.

A mixture of product formed.

Increased selectivity by adding MgBr2

Since the reactivity of cubane metalation is enhanced greatly with presence of cyano groups, it is possible to substitute all three positions ortho to the amide in a simple reaction. For instance, 4-cyanocubanamide can be converted directly into the tri(tert-butylcarbonyl)derivative as shown below.

Through Baeyer-Villiger oxidation, ter-butyl cuybl ketones can be converted easily to the polycarboxyliated cubane.

PHENYL CUBANE

 

From the basis idea of cubyl Grignard Reagent, phenyl cubane can be synthesised. The reaction of cubane diamide with 10 equiv of LiTMP and 4.0 equivalents of MgBr2 etherate in THF at 0°C followed by the addition of 10.0 equiv of bromobenzene, gave diphenylcubane diamide in 53% yield.

The mechanism is shown below:

 

The benzyne intermediate was formed in situ from the reaction of excess of LiTMP with bromobenzene. For a similar reaction, MeMgBr is used and give 30% yield of bromo-phenylcubane diamide, the first cubane derivative containing 3 different substituents.

Now, let us look the main concern of the cubane derivatives–the nitrocubanes.

Nitrocubanes are sought to be powerful, shock-insensitive, high-density explosives. They are stable compounds with decomposition points above 200°C. Simple nitrocubane can be made from simple oxidation of amines( See Functional Group Transformation.)

If we want to add more nitro groups into the cubane nucleus, we cannot do it though transmetalation because there is unstoppable cage cleavage reactions when make adjacent nitro groups. The ab initio calculation has confirmed this destabilising effect.

We are going to discuss how to make more and more substituted nitrocubane until octanitrocubane(ONC), the ultimate power house, is synthesised.

 

1,3,5 trinitrocubane and 1,3,5,7 tetranitrocubane(TNC)

As we mention early, addition of nitro groups cannot be done through direct transmetalation. Thus, we need found some indirect route.

This is done by introducing a substituent on each of 3 ortho carbons and remove the ortho-activating group in the end.

By adding a electron-withdrawing group such as a cyano group will help the case here. This choice of original substituent is important here and when cyano group is chosen, it activates the cubane nucleus without affecting the ortho directing by the diamide (for details please refer to electron-withdrawing group-cyanite).

When the dicyano amide was treated with TMPMgBr in THF and quenched with CO2. The ortho (to amide) carboxylic acid was the only product.

Even when the much activated tricyanoamide is treated with TMPMgBr and CO2 ,again, the ortho position ( to amide) carboxylic acid was formed.

The removal of the carboxamido group is done through a smart yet tedious process. The cyano group is converted to acid group first. Then, it is reduced to alcohol by lithium aluminium hydride. At same time, the carboxamido is reduced to aminotetrol. The alcohols are protected as acetates and amino tetrol is converted to carboxylic acid. The carboxylic is then removed through Barton Decarboxylatio. A detail mechanism is provided below.

The cubane-1,3,5,7-teracarboxylic acid is converted to TNC on the mechanism as follow:

The whole process is very clever, but it is very long. Thus, in 1997, a improved synthesis method for TNC was proposed by making use of the photochemsitry.

Improved synthesis for TNC

In 1993, Bashir-Hashemi showed the cubane-1,3,5,7-tetracarboxylic acid chloride can be formed by applying photochemically induced chlorocarbonyl cation( the Kharasch_Brown Reaction).

For a fast reaction, a high power Hanovia of 450 watts, medium pressure Hg was used. The favoured products are cubane tetraacid chloride shown on the right hand side. The first one, cubane-1,3,5,7-tetracarboxylic acid, made up 30% overall. This reaction conveniently prepare us the important versatile intermediate .

A detail conversion process is provided below:

 

A catalyst TMSN3 is used in converting tetraacid chloride to tetracylazide. The rest is the same as the orginal reaction.

TNC is a thermodynamic powerhouse but remarkly stable kinetically. Figure 1 shows that rapid thermal decomposition doesnot start until over 250°C.

The literature was unsupportive of this optimistic view. Poor results were also obtained initially with nitrating agent such as NO2BF4, acetyl nitrate, amyl nitrate etc.

Tetranitrocubylsodium can be formed directly on treatment of TNC with sodium bis(trimethylsilyl) amide in THF at -75°C. It can react with electrophiles to provide a useful and convenient way to achieve further functionalization of cubane nucleus.

More substituted nitrocubanes-

Pentanitrocubane(PNC) and Hexanitrocubane(HNC)

PNC

Base on the property of tetranitrocubylsodium, nitryl chloride(NO2Cl) was used to further nitrate the cubane nucleus. Treatment of NO2Cl with tetranitrocubylsodium in THF at -75°C works out 10-15% yield of pentanitrocubane(PNC). The yield increased to 30% when the solution was frozen to-180°C and allowed to warm slowly. This is called the interfacial nitration process. It is suggested that NO2Cl oxidized tetranitrocubylsodium to a radical, which made the whole reaction worked.

Base on the property of NO2Cl , N2O4 should be a better choice. The results showed that it is actually a better with 60:40 PNC to TNC ratio. The reaction is extremely clean.

PNC is colourless and highly crystalline. It is the first nitrated cubane to contain adjacent nitro groups. It behaves just TNC and other nitrocubanes, remarkly stable kinetically.

HNC

Although HNC can be prepared the same way as PNC, but the separation between PNC and HNC is extremely difficult.

However, if TIPS-substituted PNC( by N2O4 nitration from TIPS-sub TNC) react with potassium base (K(TMSN)2and the nitration with N2O4 gave a mixture of (triisopropyl) HNC and PNC in 60:40 ratio. This step is important and crucial. The separation is now possible by column chromatography on silica gel. 30% isolated yield of PURE HNC could be obtained when further treated with SiO2.

Synthesis for the last two nitro cubanes- heptanitrocubane and octanitrocubane

Interfacial nitration is not sufficient to further nitration for heptanitrocubane. Al though it is very good in deed, we need to find something which can successfully convert heptanitrocubane (HpNC).

HpNC

In this procedure TNC was treated with at least 4 equivalents of the base NaN(TMS)2 (where TMS = trimethylsilyl) at ±78 C in 1:1 THF/MeTHF. After the mono sodium salt had formed, the solution was cooled to between ±125 and ±130°C giving a clear, but very viscous fluid. This was stirred vigorously as excess N2O4 in cold isopentane was added. After one minute, the base was quenched, and the whole mixture was added to water. This resulted reproducibly in almost complete conversion of TNC (1 g scale) to HpNC (95% by NMR), isolated crystalline in 74% yield!

ONC

However, even in the presence of excess nitrating agent (N2O4 or many others) no indication
of any formation of ONC was ever seen. It is suspected that anion nitration with N2O4 proceeds by oxidation of the carbanion to the corresponding radical.Perhaps the anion of HpNC is too stabilized for this to occur. (HpNC is significantly ionized in neutral methanol.) This concept led to the use of the more powerful oxidant nitrosyl chloride. Addition of excess NOCl to a solution of the lithium salt of HpNC in dichloromethane at 78° C followed by ozonation at 78° C gave the long-sought ONC in 45±55% isolated yield on millimole scale. The intermediate product prior to oxidation is thought to be nitrosoheptanitrocubane.

Finally, the magic molecule, the so called the impossible molecule, octanitrocubane was synthesised. But, how good are they and how useful are they? Let us discuss about it in the following section.

Properties of nitrocubane:

Neither HpNC nor ONC is detonated by hammer blows!
Both have decomposition points well above 200 C. Octanitrocubane
sublimes unchanged at atmospheric pressure at 200 C. HpNC forms beautiful, colorless, solvent-free crystals when
its solution in fuming nitric acid is diluted with sulphuric acid. Single-
crystal X-ray analysis confirmed the assigned structure and
provided an accurate density at 21 C of 2.028 g cm±3, impressively
high for a C, H, N, O compound. Although octanitrocubane
catches the imagination with its symmetry, heptanitrocubane
currently is significantly easier to make than ONC. It is
denser, and it may be a more powerful, shock-insensitive explosive
than any now in use. According to page 41 of a 2004 IUPAC guide, cubane is the “preferred IUPAC name.”

  1.  ‘ ‘Cubaneand Thomas W. Cole. Philip E. Eaton and Thomas W. Cole J. Am. Chem. Soc.1964; 86(15) pp 3157 – 3158; doi:10.1021/ja01069a041.
  2.  The Cubane System Philip E. Eaton and Thomas W. Cole J. Am. Chem. Soc.1964; 86(5) pp 962 – 964; doi:10.1021/ja01059a072
  3.  Michael B. Smith, Jerry March, March’s Advanced Organic Chemistry, 5 th Ed., John Wiley & Sons, Inc., 2001, p. 1459. ISBN 0-471-58589-0
  4.  K. Kindler, K. Lührs, Chem. Ber., vol. 99, 1966, p. 227.

http://cst-www.nrl.navy.mil/lattice/struk/c8h8.html.

http://www.ch.ic.ac.uk/local/projects/b_muir/Enter.html.

http://www.sciencedirect.com.

http://www.sciencenews.org/.

http://www.winbmdo.com/.

Bashir-Hashemi, A., New developments in cubane chemistry: phenylcubanes.

J. Am. Chem. Soc.;1988;110(21);7234-7235, 110(21), 7234-7235.

D.S.Calvao, p. m. v. b. B. A. C. J. a., Theooretical Characterization of oligocubane.

Synthetic Metals 102 (1999) 1410.

E. W. Della, E. F. M., H. K. Patney,Gerald L. Jones,; Miller, a. F. A.,

Vibrational Spectra of Cubane and Four

of Its Deuterated Derivatives.

Journal of the American Chemical Society / 101.25 / December 5, I979,7441-7457.

Galasso, V., Theoretical study of spectroscopic properties of cubane.

Chemical Physics 184 (1994) 107-114.

Kirill A. Lukin, J. L., Philip E. Eaton,*,Nobuhiro Kanomata,Juirgen Hain,Eric Punzalan,and

Richard Gilardi, Synthesis and Chemistry of 1,3,5,7-Tetranitrocubane Including

Measurement of Its Acidity, Formation of o-Nitro Anions, and

the First Preparations of Pentanitrocubane and Hexanitrocubane.

J. Am. Chem. Soc., Vol. 119, No. 41, 1997,9592-9602.

P.E.Eaton, Cubanes: starting Materials For the chemistry of 1990s and the New Century.

J. Am. Chem. Soc.;1992;31;1421-1436, 31, 1421-1436.

Philip E. Eaton, t. Y. X., t and Richard Gilardi*, Systematic Substitution on the Cubane Nucleus.

Synthesis and

Properties of 1,3,5-Trinitrocubane and 1,3,5,7-Tetranitrocubane

. J. Am. Chem. SOC.1993,115, 10195-10202.

Philip E. Eaton, R. L. G.; Zhang, a. M.-X., Polynitrocubanes: Advanced High-Density,

High-Energy Materials**. Adv. Mater. 2000, 12, No. 15, August 2.

Philip E. Eaton, Cubane: Starting Materials for the chemistry of the 1990s and the new century.

Angew.Chem.Int.Ed.Engl.1992,31,1421-1436.

Philip E. Eaton, t. Y. X., t and Richard Gilardi*, Systematic Substitution on the Cubane Nucleus.

Synthesis and

Properties of 1,3,5-Trinitrocubane and 1,3,5,7-Tetranitrocubane.

J. Am. Chem. SOC., Vol. 115, No. 22, 1993,10196-10202.

T. YILDIRIM, P. M. G., D. A. NEUMANN, P. E. EATONC and ‘T. EMRICK’, SOLID

CUBANE: A BRIEF REVIEW. Carbon Vol. 36, No. 5-6, pp. 809-815,1998.

Zhang, P. E. E. a. M.-X., Octanitrocubane: A New Nitrocarbon.

Propellants, Explosives, Pyrotechnics 27, 1 – 6 (2002).

]]>
Synthesis of Azadirachtin https://amcrasto.theeurekamoments.com/2013/12/12/synthesis-of-azadirachtin/ Thu, 12 Dec 2013 03:46:07 +0000 http://amcrasto.theeurekamoments.com/?p=1211 Continue reading Synthesis of Azadirachtin]]>

Azadirachtin

11141-17-6  cas no

Azadirachtin, a chemical compound belonging to the limonoid group, is asecondary metabolite present in neem seeds. It is a highly oxidizedtetranortriterpenoid which boasts a plethora of oxygen functionality, comprising an enol ether, acetal, hemiacetal, and tetra-substituted oxirane as well as a variety of carboxylic esters.

This compound is a tetraterpenoid characteristic of the Meliaceae family but particularly from the Neem tree (A. indica), indigenous to India. The compound is found in bark, leaves and fruits of the tree but seeds have the highest concentration. This compound has not yet been synthesized in the laboratory, but when isolated and tested pure the results have been less than when extracts are used.  In the extract 18 compounds have been identified among which salanine, meliantrol and azadiractin are most prominent, the latter being in the highest concentration. Azadirachtin shows antifeedant activity, is a growth regulator, inhibits oviposition and is also a sterilizing compound. Today, commercial formulations of neem may be found with names like Neem Gold, Neemazal, Econeem, Neemark, Neemcure and Azatin among others, in many countries including the United States, India, Germany and several Latin American countries.

Azadirachtin has a complex molecular structure, and as a result the first synthesis was not published for over 22 years after the compound’s discovery. The first total synthesis was completed by Steven Ley in 2007.[1][2] Both secondary and tertiary hydroxyl groups and tetrahydrofuran ether are present and the molecular structure reveals 16 stereogenic centres, 7 of which are tetrasubstituted. These characteristics explain the great difficulty encountered when trying to produce it by a synthetic approach. The described synthesis was actually a relay approach, with the heavily functionalized decalin being made by total synthesis in a small scale but also being derived from the natural product itself for the purpose of obtaining gram amounts of the material to complete the synthesis.

Azadirachtin

“I would rank this as being one of the very toughest syntheses so far reported.”
– Steven Ley, University of Cambridge, UK, 1 G E Veitch et al, Angewandte Chemie, 2007, DOIs: 10.1002/anie.200703027 and 10.1002/anie.200703028
2 M L Maddess et al, Angewandte Chemie, 2006, 46, 591 (DOI: 10.1002/anie.200604053)

 

IT TOOK 22 YEARS and the efforts of more than 40 chemists, but Steven V. Ley‘s group has finally managed to complete a 64-step synthesis of azadirachtin, a naturally occurring insecticide (Angew. Chem. Int. Ed., DOI:10.1002/anie.200703027 and 10.1002/anie.200703028).

Isolated from the Indian neem tree Azadirachta indica, azadirachtin possesses a small but densely functionalized architecture. It has 16 stereogenic centers, seven of which are tetrasubstituted, and a diverse array of oxygenated functionalities.

“This has been a tough project from start to finish, as the molecule is so prone to rearrangement under acidic, basic, or photolytic conditions,” says Ley, a chemistry professor at England’s Cambridge University. “It has forced us to be inventive.”

Of the many hurdles the researchers had to overcome, Ley reckons the most challenging was coupling the molecule’s two main fragments. After years of attempts at this convergent approach, the group was finally able to marry these two fragments by means of a propargylic enol ether Claisen reaction. The next step, a radical-induced cyclization, elegantly constructed one sterically dense portion of the molecule.

“Making a molecule such as this is not an Everest-climbing exercise; it’s about what you learn from the experience,” Ley says. “We can be proud of the new methods and solutions to the tough problems we have encountered, and now we have the tools and procedures to really work out how this molecule functions biologically.”

Amos B. Smith III, a chemistry professor at the University of Pennsylvania, calls the work “an outstanding achievement, further demonstrating Ley and colleagues as superb tacticians in the art of complex-molecule total synthesis.”

Smith adds: “More important than the actual conquest is the exciting new chemistry that has emanated over the past 22 years from the Ley and other laboratories who have participated in this monumental challenge. Clearly, the science of synthesis is the winner.”

It was initially found to be active as a feeding inhibitor towards the desert locust(Schistocerca gregaria),[3] it is now known to affect over 200 species of insect, by acting mainly as an antifeedant and growth disruptor, and as such it possesses considerable toxicity toward insects (LD50(S. littoralis): 15 μg/g). It fulfills many of the criteria needed for a natural insecticide if it is to replace synthetic compounds. Azadirachtin is biodegradable (it degrades within 100 hours when exposed to light and water) and shows very low toxicity to mammals(the LD50 in rats is > 3,540 mg/kg making it practically non-toxic).

This compound is found in the seeds (0.2 to 0.8 percent by weight) of the neemtree, Azadirachta indica (hence the prefix aza does not imply an aza compound, but refers to the scientific species name). Many more compounds, related to azadirachtin, are present in the seeds as well as in the leaves and the bark of the neem tree which also show strong biological activities among various pest insects [4][5] Effects of these preparations on beneficial arthropods are generally considered to be minimal. Some laboratory and field studies have found neem extracts to be compatible with biological control. Because pure neem oil contains other insecticidal and fungicidal compounds in additional to azadirachtin, it is generally mixed at a rate of 1 ounce per gallon (7.8 ml/l) of water when used as a pesticide.

Azadirachtin is formed via an elaborate biosynthetic pathway, but is believed that the steroid tirucallol is the precursor to the neem triterpenoid secondary metabolites. Tirucallol is formed from two units of farnesyl diphosphate (FPP) to form a C30 triterpene, but then loses three methyl groups to become a C27steroid. Tirucallol undergoes an allylic isomerization to form butyrospermol, which is then oxidized. The oxidized butyrospermol subsequently rearranges via a Wagner-Meerwein 1,2-methyl shift to form apotirucallol.

Apotirucallol becomes a tetranortriterpenoid when the four terminal carbons from the side chain are cleaved off. The remaining carbons on the side chain cyclize to form a furan ring and the molecule is oxidized further to form azadirone and azadiradione. The third ring is then opened and oxidized to form the C-seco-limonoids such as nimbinnimbidinin and salannin, which has been esterified with a molecule of tiglic acid, which is derived from L-isoleucine. It is currently proposed that the target molecule is arrived at by biosynthetically converting azadirone into salanin, which is then heavily oxidized and cyclized to reach azadirachtin.


Azadirachtin ball and stick view

  1.  Veitch GE, Beckmann E, Burke BJ, Boyer A, Maslen SL, Ley SV (2007). “Synthesis of azadirachtin: a long but successful journey”. Angew. Chem. Int. Ed. Engl. 46 (40): 7629–32.doi:10.1002/anie.200703027PMID 17665403.
  2.  Sanderson K (August 2007). “Chemists synthesize a natural-born killer”. Nature 448 (7154): 630–1. doi:10.1038/448630a.PMID 17687288.
  3.  Butterworth, J; Morgan, E (1968). “Isolation of a Substance that suppresses Feeding in Locusts”. Chemical Communications (London) (1): 23.doi:10.1039/C19680000023.
  4.  Senthil-Nathan, S., Kalaivani, K., Murugan, K., Chung, G. (2005). “The toxicity and physiological effect of neem limonoids on Cnaphalocrocis medinalis (Guenée) the rice leaffolder”.Pesticide Biochemistry and Physiology 81 (2): 113.doi:10.1016/j.pestbp.2004.10.004.
  5. Senthil-Nathan, S., Kalaivani, K., Murugan, K., Chung, P.G. (2005). “Effects of neem limonoids on malarial vector Anopheles stephensi Liston (Diptera: Culicidae)”. Acta Tropica96 (1): 47. doi:10.1016/j.actatropica.2005.07.002.PMID 16112073.

File:Azadirachtin model.png

Extracts of the neem tree (Azadirachta indica) , the chinaberry tree (Melia azedarach) , and other plants in the family Meliaceae (e.g. Azadirachta excelsa) have long been known to have insectici al activity (Natural Pesticides from the Neem Tree, Proc. 1st Int’l Neem Conf. 1980 [H. Schmutterer et al. eds. 1982]; Natural Pesticides from the Neem Tree and Other Tropical Plants, Proc. 2nd Int’l Neem Conf. 1983 [H. Schmutterer and K.R.S. Asher eds. 1984]; Natural Pesticides from the Neem Tree and Other Tropical Plants, Proc. 3rd Int’l Neem Conf. 1986 [H. Schmutterer and K.R.S. Asher eds. 1987]). Azadirachtin, a major active ingredient in many of these extracts, is a limonoid of the tetranortriterpenoid type. Azadirachtin has been shown to be a potent insect growth regulator and feeding deterrent with value as an active ingredient in commercial insecticides (R.B. Yamasaki et al. (1987) J. Agric. Food Che . 3_5:467-471) .

The use of azadirachtin in commercial insecticides requires that the compound be extracted from the plant material and concentrated in a convenient form. Suitableazadirachtin concentrates are solid in form, have high levels of azadirachtin

(typically greater than 1-3% by weight) , and contain little or no plant oils and water. These characteristics facilitate handling, storage, distribution, and formulation.

Various methods of extracting azadirachtin from neem seeds are known in the art. J.H. Butterworth and E.D. Morgan, (1971) J. Insect. Physiol. Y]_ 969-911, describe the extraction of azadirachtin and neem oil from neem seeds using ethanol, a common solvent for azadirachtin isolation. Further separation steps (including filtration, partition of the soluble portion between light petroleum and methanol, and chromatography of the methanol extract on Floridin earth) are used to concentrate the azadirachtin to obtain a solid. Larson (U.S. Patent No. 4,556,562) discloses a similar method whereby neem seeds are first reduced in size to that of a regular grind of coffee. Azadirachtin is then extracted at elevated temperatures, again using ethanol. No further concentration steps are used, however, and the final extract is a liquid containing only 0.5-1% azadirachtin. Walter (U.S. Patent No. 4,946,681) describes a related process for extractingazadirachtin from ground de-oiled neem seeds with aprotic solvents or alcohols. The liquid extract is further treated with molecular sieves to remove water. Carter et al. (U.S. Patent No. 5,001,146) describes a two-step extraction process comprising a “cleanup” extraction with a non- polar aprotic solvent to remove the neem oil from the seeds, followed by a second extraction of the defatted neem seeds using a more polar, azadirachtin-soluble solvent. The final extract from this process is a solution containing about 4.5 g/1 azadirachtin. Kleeberg (WO 92/16109) also describes a multi-step procedure whereby the azadirachtin is first extracted from neem oil and plant material using water. The aqueous fraction is then extracted with an organic solvent to remove the azadirachtin from the water. A solid azadirachtin concentrate is ultimately obtained using a slow and inefficient phase separation followed by concentration of the organic phase and crystallization.

Inefficiencies and limitations associated with the processes described above illustrate the need for more practical and versatile methods for obtainingazadirachtin concentrates. Specifically, current methods that produce extracts containing suitably high azadirachtin content (>l-3% by weight) all involve expensive steps to remove neem oil, water, and other impurities. Such steps include decantation, phase separation, chromatography, crystallization, treatment with molecular sieves, and other purification steps. None of the known methods provides a suitably efficient, economical, or practical means for recoveringazadirachtin in a concentrated solid form that contains little or no neem oil or water.

It is known that the seeds and other parts of the neem tree [Azaderachta indicia and related species) contain natural pesticidal compositions. The main active pesticidal composition is azadirachtin which is a tetranortriterpenoid that causes feeding inhibition and growth inhibition in a variety of organisms including insects, mites and nematodes. It is possible that there are a number of similar insecticidal compounds present in neem extracts that partition with the azadirachtin. As used in this specification, the term azadirachtin is taken to include all insecticidal terpenoids present in neem extracts that partition with azadirachtin. In recoveringazadirachtin from neem seeds it is necessary to separate the active constituent from other materials including the other triterpenes, the oil. fibre and other insoluble materials, and water soluble constituents such as sugars and water soluble proteins. These separation procedures are complicated by the fact thatazadirachtin is susceptible to hydrolysis in water and to heat degradation.

One conventional method for extracting azadirachtin from neem seeds involves the use of three organic solvents and two liquid/liquid partition steps. Firstly, the neem seeds are pressed to remove the majority of the neem oil. The resulting expeller cake is then extracted with methanol. The methanol extracts a wide range of substances including azadirachtin and the other triterpenes, diterpenes. the residual oil, and some polysaccharides and proteins. To produce a powder from the methanolic supernatant, the extract must undergo a number of clean-up steps.

In the first clean-up step, the supernatant is concentrated and partitioned against hexane, or a similar non-polar solvent, to remove the oils and diterpenes. The hexane is then driven off in a still and the resulting oil is collected. The second clean-up step involves taking the de-oiled supernatant and driving off the methanol. The resulting tar is then resolved in ethyl acetate, or a similar solvent, and partitioned against water to remove the polysaccharides and water soluble proteins. The ethyl acetate which contains the azadirachtin and other triterpenes is then evaporated to produce an azadirachtin rich powder.

There are a number of problems associated with this conventional method, with the major problem being cross-contamination of the solvents used in the process and the resulting variation in product quality. While good quality azadirachtinpowder can be produced when first using the process with fresh solvents, after a number of cycles problems with cross- contamination do arise. While hexane and methanol are normally considered essentially immiscible, in a multi-component system, such as is created during the extraction of azadirachtin described above, the hexane and methanol do demonstrate some miscibility. The change in the polarity of the solvents allows oils to be carried through the hexane partition and so creates difficulties in producing a non-oily or flowable powder. A more serious problem is any occurrence of cross-contamination between the methanol and ethyl acetate. If the methanol is not removed in the drying step after the hexane partition, cross-contamination with ethyl acetate occurs. This contamination of the ethyl acetate with methanol causes azadirachtin to be carried over into the water in the ethyl acetate/water partition or in the worst case prevents a partition forming at all. A further problem with the conventional method for extractingazadirachtin is the production of waste water with a high biological oxygen demand (BOD). In many countries, the release of waste water with high BOD is not permitted and requires the installation of a relatively expensive water treatment facility. An alternative azadirachtin extraction process is described in Australian patent no 661482 to Trifolio-M GmbH, Herstellung Und Vertrieb Hochreiner Biosubstanzen. In this alternative process, the neem seed is pressed or crushed to remove the majority of the oil and the expeller cake is extracted with warm water. The warm water extraction removes the azadirachtin. some of the more polar triterpenes. the majority of the polysaccharides and water soluble proteins, and a slight amount of the more polar oily compounds. The aqueous supernatant is partitioned against a solvent of intermediate polarity, such as ethyl acetate or dichloro me thane. with the azadirachtin partitioning into the organic layer. The organic layer can then be concentrated under vacuum and theazadirachtin precipitated through the addition of a non-polar solvent, such as hexane or petroleum ether. While high yields of azadirachtin powder are produced using this alternative process, the process still results in the discharge of an aqueous solution loaded with polysaccharides and proteins which, in some countries, will require treatment to meet environmental standards. Further, the precipitation step where a non-polar solvent is added to the concentrated supernatant results in cross-contamination with its attendant problems and expense of requiring purification of the solvents prior to their re-use in the extraction process.

 

G. E. Veitch, E. Beckmann, B. J. Burke, A. Boyer, S. L. Maslen, S. V. Ley*
University of Cambridge, UK
Synthesis of Azadirachtin: A Long but Successful Journey
Angew. Chem. Int. Ed.  2007,  46:  7629-7632

Azadirachtin is an insect antifeedant. A major challenge in this 22-year odyssey was the construction of 16 contiguous stereogenic centers seven of which are quaternary. The excerpt depicted here focuses on the Claisen rearrangment used to construct the congested C8-C14 bond.

Compounds A and G were obtained by total synthesis and by degradation of azadirachtin. The degradation route enabled exploration of the difficult closing stages of the synthesis. Note the harsh conditions required to effect the difficult epoxidation F→G.

 

………………………………..

azadirachtin2.gif

The basic skeleton of the decalin fragment, intramolecularDiels-Alder reaction and aldol type cyclization and is building well using. Together is important for the selectivity of the Diels-Alder reaction, a silyl group in the after Tamao-Fleming oxidationhas become a stepping stone for introducing a hydroxyl group by.

azadirachtin3.gif

 Subsequently, a fragment coupling. An attempt was made to make the binding by alkylation, but what has been obtained, It was a compound the reaction is going on in the oxygen atom of the enol.

Anyway Since make a bond between the fragments, was a stepping stone to this Claisen rearrangement by carbon – and is trying to build a carbon bond. Reaction seems to have gone even heat, but has been developed by Toste et al (I) catalyst Au Claisen rearrangement using that seems to have been effective. 
 Conversion fairly high hurdle is followed thereafter. Barton-McCombie conditions and it has succeeded in building carbon skeleton of the right half be subjected to a radical cyclization reaction by. At a position that is crowded Then epoxidation and we have been. Becomes the conditions investigated thoroughly that (7 days) radical scavenger addition temperature (100 ℃ or more) time, it’s easy to imagine that even just one step here, consider mind-boggling are stacked . Same compound obtained in Degradation Studies This is obtained, advances the synthesized according to the reverse route later, we have completed the synthesis of azadirachtin.

azadirachtin4.gif

 Total synthesis route of the 64 steps that have been achieved 

 

azadirachtin.gif

Synthesis of Azadirachtin: A Long but Successful Journey Veitch, GE; Beckmann, E.; Burke, BJ; Boyer, A.; Maslen, SL; Ley, SV …. Angew Chem Int Ed 2007 , 46 ., 7629 DOI:10.1002/Anie.200703027
A Relay Route for the Synthesis of Azadirachtin Veitch, GE; Beckmann, E.; Burke, B. j;. Boyer, A.; Ayats, C.; Ley, SV … Angew Chem Int Ed. 2007 , 46 ., 7633 DOI: 10.1002/Anie.200703027\

………………………………………………………………………………………. art    animation

ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

GLENMARK SCIENTIST , NAVIMUMBAI, INDIA

did you feel happy, a head to toe paralysed man’s soul in action for you round the clock

need help, email or call me

MOBILE-+91 9323115463
web link

I was  paralysed in dec2007

]]>
Whisky lactone https://amcrasto.theeurekamoments.com/2013/11/13/whisky-lactone/ Wed, 13 Nov 2013 10:30:41 +0000 http://amcrasto.theeurekamoments.com/?p=1177 Continue reading Whisky lactone]]>

Whisky Lactone

Whisky lactone, also known as β-methyl-γ-octalactone or quercus lactone (from the Latin for oak treeQuercus alba), is a flavouring found in American bourbon whiskies, and is also found in all types of oak. The flavour gets into the whisky when it’s matured in oak barrels. The pure molecule has a fierce, strong, and sweet smell and can be dissolved in alcohol in any proportion.

6

http://www.sciencedirect.com/science/article/pii/S0957416698000809

5-butyl-4-methyloxolan-2-one | CAS Registry Number: 39212-23-2
Synonyms: Whiskey lactone, Oaklactone, 3-Methyl-4-octanolide, cis-3-Methyl-4-octanolide, beta-Methyl-gamma-octalactone, W380318_ALDRICH, FEMA No. 3803, EINECS 254-357-4, 5-Butyl-4-methyldihydro-2(3H)-furanone, 5-Butyldihydro-4-methyl-2(3H)-furanone, cis-.beta.-Methyl-.gamma.-Octalactone, 2(3H)-Furanone, 5-butyldihydro-4-methyl-, 4-Hydroxy-3-methyloctanoic acid lactone, 5-Butyldihydro-4-methylfuran-2(3H)-one, 5-Butyl-4-methyl-dihydro-2(3H)-furanone, ()-5-Butyl-4-methyldihydro-2(3H)-furanone, 2(3H)-Furanone, 5-butyldihydro-4-methyl-, cis-, 39212-23-2

The cis isomer is the chemical extracted from oak wood that gives whiskey a coconut-like aroma. But not all isomers of this molecule are quite this tasty. The trans isomers of 3-methyl-4-octanolide is by contrast, used as an insect repellent.

 

 

  • Whiskey lactone (3-methyl-4-octanolide) is one of perfume components of whiskey and wine.
  •  
    There are stereoisomers in the natural whiskey lactone, which are of the trans-type or cis-type in accordance with the configuration of methyl group at 3-position thereof and butyl group at 4-position thereof.
    As compared to trans-whiskey lactone
    [(3S,4R)-3-methyl-4-octanolide] (D), generally, a less amount of cis-whiskey lactone
    [(3S,4S)-3-methyl-4-octanolide] (A) is contained, for example, in whiskey and wine. However, cis-whiskey lactone (A) is superior in the characteristic of perfume.

    Figure imgb0001


    However, means for selectively synthesizing natural type cis-whiskey lactone (A) having superior properties than those of trans-type isomer (D) as described above has not been known.

  •  
    Liebigs Annalen der Chemie, No. 12, 1986, pages 2112 – 2122, disclose a method, how all four stereoisomers of 3-methyl-4-octanolide can be produced. It is taught to separate a racemic cis/trans octanolide into the two cis- and the two trans-isomers chromatographically. Furthermore, it is disclosed how to hydrolyse a lactone ring with potassium hydroxide and to protect the carboxy group subsequently yielding the isopropyl carboxylic ester. Diastereomeric pairs of the acid-protected gamma-hydroxyacid are formed by reaction with an optically active carboxylic acid, and are separated from each other by liquid chromatography. It is disclosed how to perform the hydrolysis of the diastereomers and the relactonization to obain the four stereoisomers of whiskey-lactone. No reaction at the 4-hydroxy group is suggested to invert the configuration of the chiral centre
  • Synthesis, No. 1, 1981, pages 1-28, discloses the use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. However, there is no indication for a combination of these documents. Furthermore, it is well-known that the Mitsunobu reaction proceeds according to Sn2 reaction mechanism. In the case of 3,4-trans compound (III) which is a substrate of the method of the present invention, the steric hindrance to the 4-methyl group is large because of the influence from the methyl group at a 3-position.

 

Physical data of the obtained cis-whiskey lactone are
Boiling Point : 124 – 126°C/(17 mmHg) 2266 Pa
¹H-NMR(CDCl₃) : δ 0.92(3H, t, J = 7.0 Hz), 1.02(3H, d, J = 6.9 Hz), 1.20 – 1.75(6H, m), 2.20(1H, dd, J = 3.8 and 16.8 Hz), 2.51 – 2.64(1H, m), 2.70(1H, dd, J = 7.8 and 16.8 Hz), 4.40 – 4.48(1H, m) (ppm units)

 

 

]]>
Amide Hydrogenation in Flow Reactor https://amcrasto.theeurekamoments.com/2013/11/13/amide-hydrogenation-in-flow-reactor/ Wed, 13 Nov 2013 04:41:14 +0000 http://amcrasto.theeurekamoments.com/?p=1194 thumbnail image: Amide Hydrogenation in Flow Reactor

http://www.chemistryviews.org/details/ezine/5392681/Amide_Hydrogenation_in_Flow_Reactor.html

Amide Hydrogenation in Flow Reactor (wiley)

Amines are produced by amide hydrogenation over a bimetallic platinum–rhenium catalyst in a high-throughput vertical flow reactor

Read more

]]>
Transition-metal-catalyzed C–C bond formation through the fixation ofcarbon dioxide https://amcrasto.theeurekamoments.com/2013/11/08/transition-metal-catalyzed-c-c-bond-formation-through-the-fixation-ofcarbon-dioxide/ Fri, 08 Nov 2013 07:34:54 +0000 http://amcrasto.theeurekamoments.com/?p=1185 Continue reading Transition-metal-catalyzed C–C bond formation through the fixation ofcarbon dioxide]]> Graphical abstract: Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide

Carbon dioxide is an important carbon source in the atmosphere and is “problematic” toward the activities of human beings. Although carbon dioxide is a cheap, abundant and relatively nontoxic C1 source, its chemical transformations have not been widely developed so far and are still far from synthetic applications, especially in the construction of the C–C bond. This critical review summarizes the recent advances on transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide and their synthetic applications (124 references).

http://pubs.rsc.org/en/content/articlelanding/2011/cs/c0cs00129e#!divAbstract

Transition-metal-catalyzed C–C bond formation through the fixation ofcarbon dioxide

*

Corresponding authors

aBeijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871
bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
Chem. Soc. Rev., 2011,40, 2435-2452

DOI: 10.1039/C0CS00129E

 

 

 

 

]]>
GAP chemistry for pyrrolyl coumarin derivatives: a highly efficient one-pot synthesis under catalyst-free conditions https://amcrasto.theeurekamoments.com/2013/10/28/gap-chemistry-for-pyrrolyl-coumarin-derivatives-a-highly-efficient-one-pot-synthesis-under-catalyst-free-conditions/ https://amcrasto.theeurekamoments.com/2013/10/28/gap-chemistry-for-pyrrolyl-coumarin-derivatives-a-highly-efficient-one-pot-synthesis-under-catalyst-free-conditions/#comments Mon, 28 Oct 2013 04:00:43 +0000 http://amcrasto.theeurekamoments.com/?p=1172 Continue reading GAP chemistry for pyrrolyl coumarin derivatives: a highly efficient one-pot synthesis under catalyst-free conditions]]>

Green Chem., 2013, Advance Article
DOI: 10.1039/C3GC41799A, Communication
Huiyan Wang, Xuecheng Liu, Xian Feng, Zhibin Huang, Daqing Shi
This synthesis was confirmed to follow the GAP chemistry process, which can avoid traditional chromatography and recrystallization purification methods.

GAP chemistry for pyrrolyl coumarin derivatives: a highly efficient one-pot synthesis under catalyst-free conditions

http://pubs.rsc.org/en/Content/ArticleLanding/2013/GC/C3GC41799A?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

Huiyan Wang,ab   Xuecheng Liu,a   Xian Feng,a  Zhibin Huang*a and   Daqing Shi*a
*

Corresponding authors
aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
E-mail: zbhuang@suda.edu.cndqshi@suda.edu.cn;
Fax: +86-512-65880089
b
Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, P.R. China

A concise and efficient one-pot synthesis of pyrrolyl coumarin derivatives via a four-component reaction of 4-hydroxycoumarin, arylglyoxal monohydrate, dialkyl but-2-ynedioate and amines under catalyst-free conditions in an environmentally friendly medium (ethanol) is described. This synthesis was confirmed to follow the group-assisted-purification (GAP) chemistry process, which can avoid traditional chromatography and recrystallization purification methods

spectra

R2  = 3 CHLOROPHENYL

R1= METHYL

dimethyl 1-(3-chlorophenyl)-4-(4-hydroxy-2-oxo-2H-chromen-3-yl)-5-phenyl-1H-pyrrole-2, 3-dicarboxylate (5c).

The reaction of 4-hydroxycoumarin 1 (16.2 mg, 1 mmol), phenylflyoxal monohydrate 2a (15.2 mg, 1 mmol), dimethyl but-2-ynedioate 3a (14.2 mg, 1 mmol) and 3-chloroaniline 4c (12.7 mg, 1 mmol) in ethanol (5 mL), at 80 °C 1.5 h, afforded 46.0 mg (87 %) of 5c.
white powder; m.p.: 242-246°C; IR (KBr, ν, cm-1): 3423, 3075, 3002, 2951, 2853, 1720, 1683,
1577, 1483, 1444, 1303, 1271, 1213, 1126, 1077, 1043, 1013, 988, 924, 880, 761, 698, 649; 1
H NMR (DMSO-d6, 400 MHz): δ 11.29 (s, 1H, OH), 7.76 (d, J = 7.6 Hz, 1H, ArH), 7.55 (t, J = 8.0 Hz, 1H, ArH), 7.40-7.18 (m, 6H, ArH), 7.10-7.02 (m, 5H, ArH), 3.63 (s, 3H, OCH3), 3.60 (s, 3H, OCH3); 13C NMR (DMSO-d6, 75 MHz): δ 164.28, 162.30, 162.20, 161.52, 152.91, 139.00,
138.22, 133.24, 132.88, 130.87, 130.27, 129.99, 129.21, 128.80, 128.44, 128.35, 127.59, 127.38,
124.48, 124.09, 119.89, 116.64, 116.16, 113.35, 98.28, 52.89, 52.18; HRMS (ESI) calcdforC29H2035ClNO7 [M]+: 529.0928, found: 529.0933

http://www.rsc.org/suppdata/gc/c3/c3gc41799a/c3gc41799a.pdf

]]>
https://amcrasto.theeurekamoments.com/2013/10/28/gap-chemistry-for-pyrrolyl-coumarin-derivatives-a-highly-efficient-one-pot-synthesis-under-catalyst-free-conditions/feed/ 1
Lewis acid-surfactant-combined catalyzed synthesis of 4-aminocyclopentenones from glycals in water https://amcrasto.theeurekamoments.com/2013/10/28/lewis-acid-surfactant-combined-catalyzed-synthesis-of-4-aminocyclopentenones-from-glycals-in-water/ Mon, 28 Oct 2013 03:56:40 +0000 http://amcrasto.theeurekamoments.com/?p=1169 Continue reading Lewis acid-surfactant-combined catalyzed synthesis of 4-aminocyclopentenones from glycals in water]]>

Green Chem., 2013, 15,3180-3183
DOI: 10.1039/C3GC41032C, Communication
Siming Wang, Ronny William, Kim Kui Georgina Estelle Seah, Xue-Wei Liu
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
Water makes the difference: an example of the Lewis acid-surfactant-combined catalyzed synthesis of biologically significant 4-aminocyclopentenones was developed.

Lewis acid-surfactant-combined catalyzed synthesis of 4-aminocyclopentenones from glycals in water

http://pubs.rsc.org/en/Content/ArticleLanding/2013/GC/C3GC41032C?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FGC+%28RSC+-+Green+Chem.+latest+articles%29#!divAbstract

4-Aminocyclopentenones were synthesized from readily available glycals and secondary anilines, with the aid of a Lewis acid–surfactant-combined catalyst. The reactions proceededvia a 4π conrotatory electrocyclization, affording the corresponding 4-aminocyclopentenones in good yields with excellent diastereoselectivities.

 

]]>
Axial-to-central chirality transfer in cyclization processes https://amcrasto.theeurekamoments.com/2013/10/14/axial-to-central-chirality-transfer-in-cyclization-processes/ Mon, 14 Oct 2013 07:32:01 +0000 http://amcrasto.theeurekamoments.com/?p=1150 Continue reading Axial-to-central chirality transfer in cyclization processes]]> Graphical abstract: Axial-to-central chirality transfer in cyclization processes

Axial-to-central chirality transfer in cyclization processes

Substrates, bearing axial chirality, can cyclize intra- or inter-molecularly with concomitant transfer of axial-to-central chirality to produce at least one stereocenter. In order to satisfy a strict definition of axial-to-central chirality transfer, the initial axial chirality must be lost during the cyclization process. Highly functionalized enantiopure carbocycles and heterocycles were prepared using this strategy. The transformations of configurationally stable substrates take place with high regio- and stereo-selectivity. Selected examples involving allenes, biaryls, arylamides and transient axially chiral short-lived species are discussed. Special attention is focused on the mechanistic rationale of the chirality transfer.

 

Damien Campolo, Stéphane Gastaldi, Christian Roussel, Michèle P. Bertrand and Malek Nechab
Chem. Soc. Rev., 2013, 42, 8434-8466
DOI: 10.1039/C3CS60182J
Chirality transfers from axis to sp3 carbon in cyclisation processes were reviewed.
]]>
An efficient palladium catalyst on bentonite for Suzuki-Miyaura reaction at room temperature https://amcrasto.theeurekamoments.com/2013/10/08/an-efficient-palladium-catalyst-on-bentonite-for-suzuki-miyaura-reaction-at-room-temperature/ Tue, 08 Oct 2013 07:32:01 +0000 http://amcrasto.theeurekamoments.com/?p=1147 Continue reading An efficient palladium catalyst on bentonite for Suzuki-Miyaura reaction at room temperature]]>

Green Chem., 2013, Advance Article
DOI: 10.1039/C3GC41469H, Paper
Guodong Ding, Weitao Wang, Tao Jiang, Buxing Han
The Pd/bentonite catalyst prepared by a simple impregnation method in water is very active and stable for the Suzuki-Miyaura reaction.
Clays, which are nontoxic, abundant, and cheap, are very promising supports for the design and preparation of green catalysts. In this work, the Pd/bentonite catalyst was fabricated by a simple impregnation method using water as the medium. The catalyst was characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron spectroscopy (TEM), X-ray photoelectron (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. The performance of Pd/bentonite in the Suzuki–Miyaura reaction was studied. It was found that for aryl bromides and iodides with various electron-donating and electron-withdrawing groups such as –CH3, –OCH3, –Cl, –CN, –F, –COCH3 and –NO2, the coupling reaction of substrates with arylboronic acid proceeded smoothly at low catalyst loading (Pd 0.06 mol%) under ambient temperature. The catalyst could be reused at least 7 times without any decrease in activity.
]]>
Seeding removes barrier to curious cocrystal https://amcrasto.theeurekamoments.com/2013/10/08/seeding-removes-barrier-to-curious-cocrystal-2/ Tue, 08 Oct 2013 04:00:29 +0000 http://amcrasto.theeurekamoments.com/?p=1145 Continue reading Seeding removes barrier to curious cocrystal]]>

Once the heteronuclear seeds had been used in the lab, the cocrystal formed regardless of whether or not the seeds were used

The caffeine•benzoic acid cocrystal that has eluded scientists for 60 years has finally been crystallised

Cocrystals are crystalline materials composed of two or more molecules held together within the same crystal lattice. Cocrystallisation is significant in the pharmaceutical industry, where drug molecules are screened for cocrystal formation in order to improve their solubility, stability and bioavailability. This has the added advantage of increasing the number of crystal forms that can be considered for drug formulation while simultaneously maximising patent protection.

Seeding removes barrier to curious cocrystal

READ ALL AT

http://www.rsc.org/chemistryworld/2013/08/caffeine-benzoic-acid-cocrystal

http://blogs.rsc.org/nj/2012/07/23/how-good-are-the-crystallisation-methods-for-co-crystals/

]]>